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A pseudo-spectral numerical scheme is used to study two-dimensional, single-cell, 
time-dependent convection in a square cross-section of fluid saturated porous 
material heated from below. With increasing Rayleigh number R convection evolves 
from steady S to chaotic NP through the sequence of bifurcations 
S -f P(l) + QPz + PCZ) -+ NP, where P(l) and PC2) are simply periodic regimes and QPz 
is a quasi-periodic state with two basic frequencies. The transitions (from onset of 
convection to chaos) occur at Rayleigh numbers of 4x2, 380-400,500-520, 560-570, 
and 850-1000. In the first simply periodic regime the fundamental frequency!, varies 
as fi and the average Nusselt number is proportional to R%; in P@), f, varies as 
Id a n d x  ot &. Convection in QPz exhibits hysteresis, i.e. if the QPz state is reached 
from P(l) (PCZ)) by increasing (decreasing) R then the frequency with the largest 
spectral power is the one consistent with the extrapolation offi according to fi (B).  
The chaotic states are characterized by spectral peaks with at  least 3 fundamental 
frequencies superimposed on a broadband background noise. The time dependence 
of these states arises from the random generation of tongue-like disturbances within 
the horizontal thermal boundary layers. Transition to the chaotic regime is accom- 
panied by the growth of spectral components that destroy the centre-symmetry of 
convection in the other states. Over-truncation can lead to spurious transitions and 
bifurcation sequences ; in general it produces overly complex flows. 

1. Introduction 
It is well known that with increasing Rayleigh number a thermally convecting fluid 

layer undergoes a sequence of transitions to chaotic flow. The experiments of Gollub 
& Benson (1980) identify 4 routes to turbulence depending on the geometrical aspect 
ratio of the layer and the Prandtl number of the fluid. All of these paths begin with 
a bifurcation from a steady state (S) to an oscillatory periodic flow (P), gradually 
evolve toward more complex time-dependent flows, and end in a chaotic state 
characterized by a frequency spectrum with significant broadband noise. The 
sequence of transitions constitutes a monotonic progression toward increasing 
disorder. 

Although less is known about the transitions that occur with increasing Rayleigh 
number when time-dependent thermal convection takes place in a layer of fluid- 
saturated porous material heated from below, enough has been learned to appreciate 
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that the routes to chaos in porous-medium convection are fundamentally different 
from those in the convection of ordinary fluids. The most significant difference is that 
the sequence of events occurring in porous-medium convection is not characterized 
by monotonically increasing disorder. The two-dimensional states that can exist in 
a square cross-section of fluid-saturated porous material (the situation to which this 
paper is addressed) evolve with Rayleigh number through the sequence 
S + P(l) + QP, -+ P(,) (Schubert & Straus 1982), where QP, is a quasi-periodic state 
with 2 basic frequencies and the superscripts on P simply indicate different regimes. 
The QP2+P(2) transition is a reverse transition from a more-disordered to a 
less-disordered state. Similar behaviour has been noted in H e l d h a w  convection 
(Koster & Muller 1984), which is perhaps not surprising since inertial forces are 
negligible in both the porous-medium and H e l d h a w  cases. 

According to Schubert & Straus (1982), the second single-frequency regime exists 
in the Rayleigh-number R range from about R, = 530 to at least R = 650, the highest 
value of R they considered (Rl, R,, R, and R, denote the values of R at the onset 
of convection, the S +P(l) transition, the P(l) + QP, transition, and the reverse 
QP,+P@) bifurcation respectively). The fate of this simply periodic flow as R is 
increased above 650 has remained unknown, however. Our primary objective in the 
work reported here has therefore been to extend our knowledge of the nature of 
time-dependent porous-medium convection to higher Rayleigh numbers. We are 
particularly concerned with identifying the transitions that follow the QP, + PC2) 
reverse bifurcation at  R = R, and determining if chaos lies somewhere at the end of 
this sequence. 

In order to facilitate the computations at  high Rayleigh numbers we have 
developed a numerical code based on the pseudo-spectral method (Orszag 1971 ; 
Gottlieb & Orszag 1977) that is more efficient than the Galerkin code used in Schubert 
&, Straus (1982). With this new code we have been able to accurately simulate single-cell 
porous-medium convection with unity aspect ratio for Rayleigh numbers as high as 
1200. We have confirmed previous results, in particular the bifurcations P(l) + QP, 
and QP,+P(,) a t  R, and R,, by employing much higher resolution. We have 
discovered a fifth transition, at a Rayleigh number R = R, that lies somewhere 
between 850 and 1000, which marks the end of the second simply periodic regime 
and the beginning of a second multiple-frequency regime. This high-R multiple- 
frequency regime differs fundamentally from the low-Rayleigh-number QP, regime 
in that the former contains a significant broadband spectral component. On this basis 
we classify the high-R multiple-frequency regime as chaotic. 

In the next section we briefly discuss the mathematical formulation of the problem 
and the pseudo-spectral numerical method used in its solution. Section 3 contains 
the results of our numerical experiments. It gives the sequence of bifurcations that 
takes steady convection to chaos with increasing Rayleigh number. It also describes 
each of the distinct time-dependent convection regimes that are encountered on the 
route to chaos. Section 4 discusses more general aspects of the numerical results. It 
focuses on the physical processes involved in the generation of time dependence. In 
the concluding remarks we emphasize the consequences of over-truncation in 
producing spurious transitions. 

2. Mathematical formulation 
The mathematical background is identical to that of Straus (1974), Straus & 

Schubert (1979, 1981)) and Schubert & Straus (1979, 1982) and only a brief 
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description will be given here. With the assumption that Darcy's law and the 
Boussinesq approximation are valid, it is possible to derive a single differential 
equation for the dimensionless stream function #& of the two-dimensional flow 

The associated boundary conditions are 

#&g = V"& = 0 (6 = 0 , l ) .  (2.3) 

In (2.1)-(2.3), 7 is a non-dimensional time and 6 and C are dimensionless horizontal 
and vertical coordinates respectively. The lengthscale is the thickness of the porous 
layer d, and the timescale is dapc/k, where k is the average thermal conductivity of 
the fluid and the solid matrix, p is the fluid density, and c is the specific heat of the 
fluid. The dimensionless horizontal and vertical velocities are given by $fg and - $ff 
respectively. The Rayleigh number R is defined by 

dgps Ked AT 
R =  

lck 
, 

where K is the permeability of the porous marix, a is the coefficient of thermal 
expansion of the fluid, g is the gravitational acceleration, p is the fluid viscosity, and 
AT is the excess temperature of the bottom boundary relative to the top boundary. 
The imposed boundary conditions correspond to impermeable and isothermal top 
(6 = 1) and bottom (6 = 0) boundaries and insulated vertical walls (f = 0,l). 

The solution for # can be written as an eigenfunction expansion with basis functions 
obtained from the solution of the linear part of (2.1) subject to the boundary 
conditions (2.2) and (2.3) 

Q ) Q )  

#(T, C, E )  = E E @nj(T) sin nnY cos jnt .  (2.5) 
A-1 j -0  

The substitution of (2.5) into (2.1) yieldsaninfinite set of coupled, nonlinear, first-order 
ordinary differential equations for the spectral coefficients Gn,. These equations are 
truncated with n+j < N, where N is a positive integer already referred to as the 
truncation number, and solved numerically. 

We will characterize the time-dependent solutions by the Nusselt number 

where q is the horizontally averaged upward heat flux. For a given R we calculate 
Nu(7) and determine its spectral content by means of a fast-Fourier-transform 
algorithm. The Nusselt-number time series is computed for 7 large enough, typically 
as large as T = 1, that we can accurately identify the frequencies of any peaks 
contained in the power spectrum. We also ensure that the frequencies and amplitudes 
of spectral peaks are independent of the overall length of the time integration. 

The main difficulty in applying the Galerkin method to (2.1) is the evaluation of 
convolution products arising from the nonlinear terms ; overall computation time is 
proportional to N4 in the two-dimensional problem. The pseudo-spectral method used 
here, also known as the collocation method or the method of selected points, bypasses 
the evaluation of convolution products and is thereby more efficient in computing 
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FIQWRE 1.  Comparison between the Galerkin code and the pseudo-spectral code to assess the 
relative speeds of the methods: 0,  the pseudo-spectral code with truncation numbers N = 2'", where 
m is an integer; 0,  the pseudo-spectral code with truncation numbers N P 2m; 0,  the Galerkin 
code. The Euler method was used in both codes. The plotted CPU(s) (IBM370/3033) is the 
computation time required to advance a specified AT. AT is identical for both codes. 

N 

the nonlinear terms. The pseudo-spectral code has been extensively tested against 
the Galerkin code of Straus (1974). 

The Galerkin code used by Schubert t Straus (1982) explicitly enforces the 
symmetry condition that the only non-zero @,a are those for whichj + n is a non-zero 
even integer. This is not required in the pseudo-spectral code, which allows non- 
symmetric modes to grow freely. However, we found that the spectral coefficients 
representing the non-symmetric modes generally did not grow ; instead, the values 
of these coefficients remained negligibly small except for a few cases with very high 
Rayleigh numbers. This will be discussed in greater detail later in the paper. 

Figure 1 shows the computation time required to advance one a priori specified 
time step AT in the Galerkin and pseudo-spectral codes as a function of truncation 
number N (the same AT and identical time integration schemes are used in both codes). 
The speeds of the two codes are comparable at relatively low values of the truncation 
number. However, the pseudo-spectral code is much faster at the large truncation 
levels required to simulate convection at very high Rayleigh numbers. For example, 
the pseudo-spectral code is roughly 40 times faster at N = 128 and would be 1300 
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times faster at N = 1024. In  the range of truncation numbers typical for the present 
study (N = 30-56), the pseudo-spectral code runs roughly 7 times faster than the 
Galerkin code. Most of the calculations reported here were carried out on the 
VAX 11/780 minicomputer using double precision (14 significant figures). 

3. Characteristics of timadependent solutions at high Rayleigh number 
Transition 1 : Onset of steady convection S 

The critical Rayleigh number R, for the onset of steady single-cell convection S in 
a square cross-section is 4x2 (Lapwood 1948). 

Transition 2 : S + P(I) 
Single-cell convection is steady for Rayleigh numbers less than a second critical value 
R,, whereas for R 2 R, it is simply periodic P(I) with a single frequency f,. It is 
difficult to determine the precise value of R, because of the necessity of prohibitively 
long time integrations. Schubert & Straus (1982), using the Galerkin technique with 
N = 18, concluded that R, lies between 380 and 400. Caltagirone’s (1974) numerical 
results gave R, = 385. At values of R > R, the frequencyf, increases with R according 
to f, oc I$ as shown in figure 2. 

Figure 3 shows the streamlines and isotherms at successive intervals of time during 
a single oscillation of the flow at R = 500. Tongue-like deformations of the thermal 
boundary layers are responsible for the oscillatory behaviour. They are most readily 
visible in the isotherm patterns as bumps in boundary-layer isotherms. The distur- 
bances grow in amplitude as they are advected towards the corners, and they can 
be seen in the vertical plumes that form when the boundary layers are forced to turn 
the corners. The core of the flow experiences a significant alteration during the 
oscillation; this is most evident in the stream-function patterns. 

Transition 3 : P(I) -+ QP, 
The third transition takes place by the introduction of a subfrequency f, in addition 
to the primary frequency f,. The primary frequency f, has an H Rayleigh-number 
dependence similar to the frequency in the simply periodic regime that exists at 
R < R, (see figure 2). Indeed, f, in the double-frequency regime is a continuous 
extension of f, in the single-frequency regime, while the frequency f, is less than a 
third of f,. The bifurcation Rayleigh number R, depends upon the truncation 
number. With N = 18, R, is between 480 and 500 (Schubert & Straus 1982), but both 
N = 26 and N = 30 give a single-frequency solution at R = 500 and a double-frequency 
state at R = 520. Our best estimate for R, is somewhere between 500 and 520. 

Figure 4 shows (a)  Nu(T)-% and its ( b )  power spectrum at R = 540. All the 
spectral peaks occur at frequencies that are sums and differences of the two 
fundamental frequencies f, and f, and their harmonics. The powers and frequencies 
of the spectral peaks are listed in table 1. It is perhaps significant that the spectral 
peak at f* = fi+f2 lies exactly on the extension of the B trend defined by the 
frequency of the second simply periodic regime (figure 2) that we discuss below. 

Streamline and isotherm patterns for a typical QP, state at R = 540 are shown in 
figure 5. Disturbances to the thermal boundary layer are particularly evident in the 
isotherms while the streamlines clearly illustrate the variability in the core flow. One 
of the examples shows an instant when there are two rotating cells in the core. The 
clear variability in the core flow is characteristic of the P(I) and QP, time-dependent 
regimes. 
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FIGURE 2. Dimensionless frequenciesfof the peaks in the power spectra of Nu@). 0, N = 18; 0, 
20; 0,  26; 0, 30; A, 36; 0, 42. "he primary frequency fl in the first simply periodic regime 
approximately fits to the power law &, while in the second single-frequency regime fl follows the 
trend H. The subfrequency j2  is shown in the first multiple-frequency regime. Subfrequencies ft 
and fa are shown for the second multiple-frequency regime. The different valuea of .f2 and f8 at 
R = lo00 and 1100 for the truncation levels 30, 36 and 42 are due to different initial conditions. 
The large scatter in fs is probably due to poor frequency resolution at these low frequencies. 

We have found that the solutions in QP, exhibit hysteresis. With the exception 
of the solution for R = 530, all of our results were obtained by employing a solution 
at a lower R to provide the initial conditions for a higher-Rayleigh-number case. The 
solution at R = 530 was obtained by using a solution at  a higher R in the second 
P-regime (discussed below) to provide initial conditions. According to table 1, at 
R = 530 the spectral peak with the highest power is atf = 147 and the one with the 
second highest power is at f = 81. This is not what would be expected from an 
interpolation of the results at R = 520 and R = 540 (table 1). The primary frequency 
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FIQURE 3. Streamline and isotherm patterns at R = 500 during a single oscillation (N = 26). The 
non-dimensional time interval between successive figures is 0.0016 and the total elapsed time is 
0.009 = l/fi = 0.01). The isotherm contour interval is 0.15. The stream-function q5[ contour 
interval is 2.5. 

f = 150 at R = 530 is more consistent with an extension to lower R of the f a trend 
characteristic of the second simply periodic regime (figure 2). Since the primary 
frequencies (the one8 with the highest spectral powers) at R = 520,540,550 end 560 
are consistent with the f a Rf trend of the first simply periodic regime (figure 2) we 
conclude that the solutions in QP, depend on the paths by which they are arrived 
at. 

The variances in the Nu(T) power spectra of the QP, solutions ere distinguished 
by relatively large values (figure 6). Schubert & Straus (1982) reported that the 
variance goes through a strong minimum between R = 520 and 600. This study 
locates the minimum at R = 570. 

Tramition 4 : QP, -P P@) 
A reverse transition from multiple frequency to single frequency occurs at the fourth 
bifurcation Rayleigh number R,, which we estimate to be between 560 and 570 for 
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FIGURE 4. (a) The time series Nu(7)-% and (a) its power spectrum at R = 540 and N = 28. 

N = 26 and 30. This is somewhat higher than the estimate R, = 520 based upon 
N = 18 (Schubert & Straus 1982). The characteristic frequency in this second simply 
periodic regime is independent of truncation number and is consistent with the 
functional relationf cc @ (figure 2). Isotherms and streamlines for this case (R = 650) 
are shown in figure 7 at equally spaced times during a single oscillation. The flow and 
isotherm patterns in the core are essentially unchanged during an oscillation, in 
contrast to the variability of the core flow in the first simply periodic regime (figure 
3). The tongue-like thermal blobs in the top and bottom boundary layers are 
prominent in figure 7. They grow slowly as the circulation carries them towards the 
corners where they are released into the rising or falling currents along the vertical 
walls. Each boundary layer contains a single thermal disturbance. 

The variance in Nu, which falls with increasing R at the onset of the second P-regime, 
soon recovers (with a further increase in R) the level it had in QP2 and stays at that 
magnitude (figure 6). The second P-regime exists for R up to 850. With a further 
increase in R i t  is replaced by a new type of time-dependent regime totally different 
from its predecessors. 

Transition 5 : Pc2) --f NP 
The determination of R associated with the fifth transition from P@) to NP requires 
large truncation numbers. Because of insufficient resolution both N = 20 and N = 26 
exhibit a spurious transition to multiple-frequency solutions at R = 850. However, 
the transition at R = 850 disappears when the truncation number is increased to 
N = 30. Our best estimate for R, based on N = 30, 36, 42 and 56 is somewhere 
between 850 and 1000. 

Power spectra of Nu(7) for R just above R, typically contain broadband background 
noise. The noise is a feature common to all the solutions we have obtained a t  R > R,, 
independent of truncation number. Thus, because of the ubiquitous broadband noise, 
we follow Gollub & Bensen (1980) and refer to these solutions as non-periodic states 
(NP) even though they also have relatively sharp spectral peaks. 
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fr 01' 5 f* 
f a  
fl -fe  
fl 
fl +f2 
fi-fa 
f a  
fl 
2fl - f a  
fi + f a  
f2 
fl -fe 
fl 
fl +fe 
f a  
fl -fe 
fl 
f a  
fl -fe 
fl 
fl + f e  
f3 
fa-fs 
fa 

fi -fa - f 3  

fl - f a  
fl -fe +f3 
fl -f3 
fl 
fl +f3 

f2+f3 

f 3  

f a  -fs 
f B  
fe +f3 
f a  + 2f3 
f1-fe-f3 
fi-fa 
f1-f2+f3 
fl -fs 
f, 
3 -f3 
fs  

f a  

fl -f2 -f3 
fa -fa 
fl -fe +f3 
fl -fa 
fl 
fl +f3 

f2-f3 

f2+f3 

14 
179 
193 
207 
218 
249 
264 
278 
442 
456 
470 
34 

115 
149 
183 
263 
297 
301 
412 
450 
485 

+ 2.8 

TABLE 1. Powers and frequencies of spectral peaks in multiple-frequency regimes 
* Initial conditions correspond to a pa) state at higher R. 
t The initial conditions are different. 
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FIQURE 5. Streamline and isotherm patterns at equal intervals of time when R = 540 (N = 26). The 
non-dimensional time interval between successive figures is 0.0045 and the total elapsed time is 
0.027 ( T ~  = 1/ fl = 0.0093, T~ = 1 / j 8  = 0.033). The isotherm and streamline contour intervals are the 
same aa in figure 3. 

Figure 8 shows (a) Nu(7) and its (b) power spectrum for the NP state at R = lo00 
(N = 42). The frequencies of the spectral peaks at R = loo0 are related to the 
frequencies of spectral peaks in the other time-dependent regimes. The primary 
frequencyf, = 466 (table 1) is consistent with an extension of thef a d trend of the 
aecond P-regime. The peak at the second frequencyf, = 193 has the highest power, 
and the value of f, is near the extension of the f a  & trend from the first P-regime. 
The spectrum at R = loo0 contains power at a third independent frequency which 
we have identified aa fa = 14. The frequencies, fi and the f8 are sensitive to initial 
conditions. For example, by starting from a slightly different set of spectral 
coefficients, we obtained f, = 156 and f8 = 34 at R = 1OOO. Nonetheless, both 
solutions are characterized by the presence of two incommensurate subfiequencies, 
and they are therefore fundamentally similar. The frequencies of the spectral peaks 
for both R = 10o0 solutions are shown in figure 2. 
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FIGURE 6. Variance of Nu@) time series as a function of Rayleigh number. 
Symbols are defined in figure 2. 

In order to be certain that the N P  state observed at R = 1000 is not a result of 
over-truncation, we carried out calculations with the truncation number increased 
to 56. The computations were continued until it was clear that the fundamental 
frequencies were well defined (7 - 0.75). The power spectrum of the solution, 
although not dominated by the same frequencies as found in the N = 42 calculations, 
was found to be characterized by three independent frequencies and broadband 
background noise. (Again, the fact that the frequencies were not the same as found 
at N = 42 is probably a result of the dependence of the details of the solution on initial 
conditions.) This result confirms that convection a t  R = lo00 is, in fact, non-periodic 

Flow patterns and isotherms a t  several times are shown in figure 9 for the R = 1000 
solution presented in figure 8. The centre-symmetry characteristic of the S, P(l), &Pz 
and P@) regimes no longer exists. This is due to the growth of coefficients @*,, with 
j + n  = a positive odd integer. The growth of the ‘odd’ coefficients is very slow; 
integration for at least a half of the characteristic diffusion time (7 = 0.5) is required 
for these coefficients to reach their full amplitude. Since initially assigned large values 
of the ‘odd’ coefficients decay monotonically with time a t  R = 850, the growth of 
these coefficients at  R = lo00 should be considered a special characteristic of the 
NP-regime. Figure 9 shows that there are at least two thermal blobs in each of the 

(NPL 
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FIGURE 7. Streamline and isotherm patterns at equal intervals of time during a single oscillation 
when R = 650 (N = 18). The non-dimensional time interval between successive figures is 0.00056 
and the total elapsed time is 0.0044 ( T ~  = l/fi = 0.0050). The isotherm contour interval is 0.15 and 
the stream-function contour interval is 3.3. 

boundary layers. These thermals are thus generated at a much faster rate in the 
NP-regime than they are at lower R.  The flow in the core region is rather similar to 
that in the second periodic regime; there is no strong variability in the pattern from 
one instant of time to another. The disturbances are largely confined to the boundary 
layers. The variance in Nu(T) increases by an order of magnitude in the transition 
from P@) to NP (figure 6). 

Transition 6 ; NP + time-dependent multiple cells? 

For N = 30 or 36 and R = 1200 single-cell time-dependent convection no longer 
exists. The flow splits up into four or five vortices, evidently as a result of penetration 
by the thermal plumes into the core (figure 10). The sizes of the vortices and their 
senses of rotation vary throughout the flow field. The flow patterns of these 
time-dependent multiple-cell solutions are, therefore, fundamentally different from 
the steady multiple cells of linear theory. The time-averaged Nusselt number 
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FIQURE 8. (a) The time series NU@)-= and (6) its power spectrum at R = lo00 and N = 42. 
There is a broadband noise component of the spectrum in addition to some sharp spectral peaks. 

decreases by approximately 20% from the value it would have had if single-cell 
convection had persisted, and the variance increases by an order of magnitude from 
its level for the NP states. The power spectrum contains no consistently identifiable 
peak; the power decays slowly and monotonically, in an average sense, as frequency 
increases (figure 11). 

The transition to time-dependent multiple cells described above is, however, an 
artifact of over-truncation. With the higher truncation number of 42 the flow at 
R = 1200 is indeed single-cell NP convection, just as it is at the lower Rayleigh 
numbers of 1000 and 1100. However, we speculate that the spurious bifurcation to 
time-dependent multiple cells at R = 1200 and low N might indicate that a similar 
transition actually occurs at higher R. 

4. Discussion 
4.1. Time-averaged Nusselt number 

It has been established in previous calculations (Schubert & Straus 1982) that 
3% cc H for convection in the first simply periodic regime P(l). The results reported 
here confirm this Nu-R relation for R in P(l) (figure 12). In addition, they show that 
a different z - R  power-law relation applies in the second simply periodic regime P@). 
For R in P@), % cc fi is a good fit, in the least-squares sense, to the numerically 
determined values of the time-averaged Nusselt number (figure 12). The differences 
in the slopes of the %-R power-law relations between the two simply periodic flow 
regimes can be understood in terms of the characteristic flow structures of the 
regimes. The formation of thermal blobs in the P(l) regime (figure 3) tends to thicken 
the boundary layers along their entire length. This tends to offset the thinning of the 
boundary layers that normally accompanies increases in R and consequently tends 
to reduce the rate at which the heat transport increases with R. In contrast, thermal 

11-2 
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FIQURE 9. Streamline and isotherm patterns at equal time intervals for R = lo00 ( N  = 42). The 
non-dimensional time interval between successive figures is 0.0016 and the total elapsed time is 
0.0094 ( T ~  = l/fi = 0.0022, T~ = l/f2 = 0.0053, T~ = l/f3 = 0.053). The isotherm contour interval 
is 0.15 and the stream-function contour interval is 5. 

blobs in the P@) regime are more localized, and most of the horizontal walls are 
covered by undisturbed thermal boundary layers. Boundary-layer thinning with 
increasing R occurs with less opposition from the development of broad thermal 
plumes, and heat transfer can increase more rapidly with increases in R. The flow 
patterns of figure 7 also show that the discharged thermals do not significantly affect 
the core flow. Thus, convection in the P@) regime can be properly characterized as 
a boundary-layer-type flow. The increase of the average Nusselt number with R 
approximately follows the 

A simple scale analysis based on boundary -layer approximations can predict the 
slope of the log%-log R relation at the relatively high Rayleigh numbers of the Pcz) 
regime. The analysis is similar to one presented by Kimura & Bejan (1984) for 
convection driven by constant heat flux from the side and it has been applied to the 
present problem by Bejan (1984). Advection of heat by the plumes is responsible for 

trend into the NP regime (figure 12). 
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FIGURE 10. Streamline and isotherm patterns at equal time intervals for a non-periodic solution 
at R = 1200 ( N  = 36). The non-dimensional time interval between successive figures is 0.0035 and 
the total elapsed time is 0.021. The isotherm contour interval is 0.15 and the stream-function q36 
contour interval is 3.5. 

heat transport across the core, while vertical conduction transfers heat across the 
boundary layers. By matching these heat transports, it  is possible to deduce that 

Nu oc R. (4.1) 

This is very close to the result Nu oc H that we obtained by a least-squares fit of 
calculated heat transports in the Rayleigh-number range 550-1 100. The agreement 
between (4.1) and Nu K H further substantiates the classification of convection in 
P as a boundary-layer flow. 

4.2. Mechanism of oscillation 
One physical process that can lead to oscillatory convection is the gravitational 
instability of thermal boundary layers over heated or cooled horizontal surfaces 
(Howard 1964). When the Rayleigh number based on the local thickness of the 
boundary layer and the temperature difference across it exceeds the critical value, 
the layer becomes unstable and eventually breaks up by forming a buoyant hot spot 
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FIGURE 11. (a) The time series Nu(T)-%% and ( b )  its power spectrum at R = 1200 and N = 36. 
There is no consistently identifiable peak in the power spectrum. 
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FIGURE 12. Time-averaged Nusselt number as a function of R. 

Symbols are defined in figure 2. 
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or plume. The occurrence of boundary-layer instability has been confirmed 
experimentally by Sparrow, Husar & Goldstein (1970) with water as the working fluid. 

Moore & Weiss (1973) encountered oscillatory behaviour in their numerical 
simulations of convection of an ordinary fluid. Their results (figure 3 in Moore & Weiss 
1970) do not provide any evidence of buoyancy instability of the thermal boundary 
layers. Instead, they show that the tips of the vertical thermal plumes are periodically 
pinched off after the plumes turn the corners and become horizontal. The pinched-off 
thermal blobs are advected as isolated hot or cold spots past the horizontal thermal 
boundary layers and eventually dissipate by diffusion. When a hot (cold) thermal blob 
passes the cold (hot) thermal boundary layer at the top (bottom) of the convection 
cell it creates a disturbance of the layer. This mechanism for producing oscillatory 
behaviour depends on the interaction of isolated thermal blobs with the boundary 
layers. Welander (1967) and Keller (1966) invoked a similar interaction to explain 
the convective oscillations of fluid loops. 

According to the temperature fields shown in figures 3, 5, 7 and 9, buoyancy 
instability of the horizontal thermal boundary layers appears to be the primary source 
of temporal variability in the examples of porous-medium thermal convection in this 
study (see Gary et al. 1982 for a similar observation). The time period taken to 
generate a thermal corresponds to one cycle of the Nusselt-number oscillation (see 
figures 3 and 7) .  The thermals discharged along the vertical boundaries dissipate by 
diffusion before they reach the opposite horizontal boundaries. Thus there is no 
thermal-blob-boundary-layer interaction of the type involved in the Moore 8z Weiss 
(1973) study. 

Horne & O’Sullivan (1978) and Horne & Caltagirone (1980) have also investigated 
the sources of time dependence in porous-medium thermal convection. They found 
that, though the boundary-layer Rayleigh number is supercritical, the growth time 
of a thermal varies as R-!, (this agrees with our finding in the P@) regime) and not 
as R-,, as might be expected if Howard’s mechanism were the source of generation 
of thermals. However, Howard’s model applies to the diffusive growth of a boundary 
layer in a stationary medium of infinite extent. In this case, the boundary-layer 
thickness 6 varies as d and since S varies as R-’ the characteristic frequency of 
oscillations caused by buoyancy instability of the boundary layer is cc R2. However, 
things are more complicated in high-Rayleigh-number porous-medium convection. 
The horizontal boundary layer thickens with distance from the corner, but not in 
a simple way because of the influx of material from the interior of the cell into the 
boundary layer. In  addition, the horizontal velocity in the boundary layer varies with 
distance from the corner. These complications preclude a simple rationale for the 
f cc R-! scaling in the P@) regime. The isotherm and streamline patterns nevertheless 
confirm that buoyancy instability of the horizontal thermal boundary layers is the 
source of the oscillatory behaviour of the high-Rayleigh-number P@) solutions. 

4.3. Similarities to Hele-Shaw convection 
There are interesting similarities between time-dependent convection in a porous 
medium and in a HeleShaw cell because inertia effects are negligible in both flows. 
Time-dependent Hele-Shaw convection has been found to exhibit hysteresis (Koster 
& Muller 1984), i.e. the state a t  a given Rayleigh number can depend on whether it 
is attained by increasing or by decreasing the Rayleigh number. We have found 
analogous behaviob for states in the multiple-frequency QP, regime (R = 530, table 
1). A comparison of the frequencies given for R = 520,530 and 540 in table 1 indicates 
that the system tends to retain the dominant frequency inherited from its predecessor 
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states. It is possible that the bifurcation Rayleigh numbers separating the QP, 
interval from its adjacent simply periodic regimes depend on whether the transitions 
are crossed in the directions of increasing or decreasing R.  

Reverse transitions, i.e. bifurcations from more to less disorder with increasing R ,  
occur in both porous medium and Hele-Shaw convection (Koster & Muller 1984). 
Porous-medium convection exhibits the QP, + P transition (Schubert & Straus 1982). 
In  the Hele-Shaw experiment (Koster & Muller 1984) double-cell oscillatory convection 
also undergoes a Q P + P  transition. With increasing R this type of convection 
eventually evolves into 4-cell steady convection. We speculate that single-cell, 
time-dependent convection in a porous layer could eventually evolve (with increasing 
R )  into a multiple-cell, time-dependent or steady-state circulation. 

4.4. Route to chaotic convection 
A system of nonlinear ordinary differential equations can evolve (with monotonic 
change in a dimensionless parameter that governs the solution) to a state of chaos 
by a t  least two routes. One path involves the introduction of a third incommensurate 
frequency into the time-variable state (Ruelle & Takens 1971). The other consists of 
a sequence of period-doubling bifurcations (Feigenbaum 1978). The numerical 
experiments of this paper evolve to  chaos with increasing R according to the scheme 
of Ruelle & Takens (1971). The introduction of the third incommensurate frequency 
leads the system to an increasingly complex state that can be seen as high background 
noise in the power spectrum of figure 8. 

Over-truncated systems with N = 20 and 26 evolve toward chaos along different 
paths. With N = 20, the onset of the second multiple-frequency regime takes place 
a t  R = 850 by the introduction of two subfrequencies whose ratios to the primary 
frequency arefa/f2/fi = 1/2/4, i.e. period doubling occurs. Gollub 6 Benson (1980) 
have demonstrated the occurrence of period doubling in the thermal convection of 
ordinary fluids for certain values of the Prandtl number and cell aspect ratio. With 
N = 26, the onset of the second multiple-frequency regime also takes place at 
R = 850, but it occurs via the introduction of two incommensurate frequencies, 
analogous to the transitions that take place a t  R = 1000 for the higher truncation 
levels. The N = 26 single-cell solutions become time-dependent multiple-cell solutions 
a t  R = 1OOO. 

Symmetry breakdown associated with the growth of odd coefficients @jn, 

( n + j  = odd integer) is a characteristic common to all the NP-states independent of 
truncation level. The growth of these coefficients is not a numerical artifact or 
instability. Odd coefficients established through calculations with N = 20 and 26 
decay when the truncation number is raised to N = 30, and the system restores its 
symmetry. However, we have never observed any decay of odd coefficients in the NP 
regime at truncation levels of N = 36, 42 and 56. McLaughlin & Orszag (1982) have 
also noted a link between symmetry breaking and the onset of chaos in the numerical 
simulation of Rayleigh-BBnard convection in air. 

5. Concluding remarks 
The major new findings we report are: (i) the route to chaos in porous-medium 

thermal convection is S --f P(l) --f QP, + PC2) --f NP, which involves the introduction of 
two incommensurate frequencies into a simply periodic state according to the theory 
of Ruelle & Takens (1971), and (ii) the existence of hysteresis in a multiple-frequency 
QP, regime. Overtruncation has serious consequences in studies of time-dependent 
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convection and must be zealously guarded against lest physical reality be attributed 
to spurious bifurcations and transition sequences (Marcus 1981). For example, we 
have seen that over-truncation can lead to chaotic convection through the process 
of period doubling. Overtruncation generally leads to overly complex behaviour in 
time-dependent solutions, a point that has also been emphasized by Curry et al. (1984) 
in their recent study of the route to chaos in Rayleigh-BBnard convection of an 
ordinary viscous fluid with free-slip boundaries. It should be remembered that steady 
multiple-cell solutions also exist at  the high Rayleigh numbers, where we have found 
periodic, quasi-periodic and chaotic single-cell convection. It would be of interest to 
see if Steen’s (1984) phase-space approach could be generalized to determine the 
probability of realizing the different modes of high-Rayleigh-number convection. 
Finally, it would be of value to determine how the route to chaos might be affected 
by different cell aspect ratios and the additional degree of freedom provided by the 
third dimension. Such studies are now in progress. 
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